

New Tools

- Instead of trial and error, use computer to help
 - Models relate properties of interest to structure
 - New structures can be designed *computationally*
 - Synthesize only those with an increased probability of exhibiting the desired properties
- \rightarrow A mathematical relationship must be found between the structures and the properties
 - -Once established, can "test" new structures
 - -Experimental work is more focused so chemists can be more productive

Definitions

Quantitative Structure Activity Relationship

 QSAR: Relates molecular structure to pharmacological activity

Quantitative Structure Property Relationship

- QSPR: Relates structure to physical properties (boiling point, dipole moment, etc.)
- \rightarrow Terms are sometimes used interchangeably
- Cheminformatics
 - Includes the design, creation, organization, management, retrieval, analysis, dissemination, visualization, and use of chemical information
 - Includes computational chemistry and QSAR/QSPR

Goal of QSAR/QSPR

- Find a quantitative relationship between structure and observed activity or property
 - Empirical
- Multi-variant statistical predictions used
- Hope to find a good statistical correlation between an activity and a molecular property

Steps

- 1. Compile list of compounds with *experimentally determined* properties
 - Ideally want 10 times the number of compounds as parameters
- 2. Obtain geometries
- 3. Compute molecular descriptors
- 4. Calculate correlation coefficients
- 5. Perform a curve fit
 - Perhaps improve fit by including/excluding parameters

Why QSAR/QSPR?

- Drug Design
 - Costs > \$600M to bring a new drug to market
 - Patent lifetime is limited (generic drugs)Wait until late as possible to file a patent
 - Synthesis/purification of compounds is expensive and time-consuming
 - Want to "zero in" on the best candidates quickly
 - QSAR provides a method for focusing on the group of most promising drug candidates
 - Now, spend time on only those compounds more likely to go forward in the process

Pros and Cons

- <u>Pros</u>: Detailed mechanistic understanding not required
 - Fast & easy screening of a large number of compounds
 - Can provide answers as to what type of molecular structures warrant further investigation
- Cons: Less insight than a mechanistic model
 - If mechanism were known, better candidates could be identified
 - Need experimental data to calibrate the regression line

Some Common Molecular Descriptors
→ Descriptor: One or more things that explain properties
(chemical, physical, biological) in a group of analogs
Constitutional : Molecular weight, number of rings, # of H atoms, # of heteroatoms, functional groups
Topological: Connectivity indices
Electrostatic: Polarizability, dipole moment
Geometrical: Molecular volume, surface area, shape indices
Statistical Mechanical: Vibrational frequencies, thermochemical parameters
Quantum Chemical: HOMO/LUMO energies, reactivity indices

Some Quantum Chemical Descriptors

- Easier to determine than experimental descriptors
 - Atomic charges, frontier orbital densities
 - Molecular orbital energies: HOMO and LUMO
 - Susceptibilities and Superdelocalizabilities
 Nucleophilic, Electrophilic, and Radical
 - Atom-atom polarizabilities
 - Molecular polarizabilities
 - -Dipole (and higher order) moments
 - Polarity indices
 - Total energy

Quantum Chemical Considerations

- QM calculations offer an attractive source of new descriptors
 - Most researchers now include such descriptors since they are easily calculated
- Errors due to approximations:
 - Will tend to cancel out, since errors should be transferable within structurally similar molecules
- QSAR/QSPR is an aid, but cannot substitute for chemical intuition and experience
 - For example, structures with certain functional groups are not good drug candidates

Some Examples from the Literature

- pK_a predicted from atomic charges on acidic H's
- Electrophilic aromatic substitutions predicted from activation hardness
- Octanol/water partition coefficients predicted from atomic charge densities
- Gas phase acidity of substituted benzoic acids predicted from AM1 calculated net atomic charges on O atoms
- Mutagenicity of quinolines predicted from LUMO energies
- GC retention indices predicted from multiple quantum mechanical descriptors

Tools

- CAChe, using Project Leader, automates the calculations, will perform statistical analyses, draw graphs, etc., etc.
- Spartan '06 includes a spreadsheet, with capabilities similar to that of CAChe
- Chem3D-Ultra provides the ChemSAR interface for Excel
- HyperChem will also output data to Excel

Lab Session

- QSPR investigation of the reaction rates for atmospheric oxidation (by hydroxyl radical) of hydrofluorocarbons (HFCs) and hydrofluoroethers (HFEs)
- Tool = Spreadsheet
 - Make sure the Data Analysis Tools in Excel are 'activated'